قد تبدو في بعض الأحيان المعادلات التي تتضمن كسورا (أو أعدادا جذرية) معقدة قليلا ما، لكن ما إن تستعمل مهارتين لديك هما توحيد المقامات و قواعد التناسبية إلا و تكتشف سهولة مثل هذا النوع من المعادلات حيث يمكن تؤويلها إلى معادلات بسيطة يمكننا التحكم في طريقة حلها. في الدرس الرابع نذكر بالمهارتين السابقتين و ندمجها في حل معادلات تحتوي على الكسور :
أنشطة التمهيد المعادلة البسيطة معادلة بأقواس معادلة كسرية

1 - قاعدتان أساسيتان :

أ ) - قاعدة توحيد المقامات :

توحيد المقامات هو تقنية لمفهوم رياضي نستعملها لتسهيل جمع أو طرح الأعداد الكسرية أو ( الجدرية)، الفكرة الأساسية من وراءه تتمثل في جعل عددين أو عدة أعداد كسرية تشترك بذات المقام، وهو الأمر الذي يعني ببساطة الحديث عن نفس الوحدة عند جمع البسوط.
          قاعدة 1 :

عندما نضرب (أو نقسم) بسط و مقام عدد كسري (أوجدري) في نفس العدد الغير المنعدم نحصل على كسر مساو له.

مثال : وحد مقامي العددين 4/7  و 5/8

ب) - قاعدة جداء الطرفين يساوي جداء الوسطين :

هذه القاعدة تعرف بقاعدة جداء الطرفين يساوي جداء الوسطين :
الطرفين هما العددين a و d و يشغلان طرفي التناسب المؤلف من الأعداد a و b و c  و d في هذا الترتيب.
الوسطين نقصد بهما b و c .
           قاعدة 2 :

a وb وc أعداد حقيقية حيث a و b معا يخالفان 0 :

أمثلــــة :

طريقة حل المعادلة التي تحتوي على الكسور:

هناك عدة طرق لحل المعادلات التي تحتوي على الكسور، هذه الطرق ربما تختلف عن بعضها قليلا بحكم القواعد و المهارات الحسابية التي نستعملها، لكنها تؤدي نفس الوظيفة هي حل معادلة كسرية من الدرجة الأولى بمجهول واحد، سنقترح عليك ثلاث و عليك أن تختار الطريقة المناسبة لك :
مثال  : حل المعادلة التالية :

الحـــل

  الطريقة الأولى : توحيــــد المقامات                 
في هذه الطريقة نقوم بثلاث خطوات :
      1. نوحد المقامات ( في هذا المثال المقام الموحد ل 9 و 18 و 6 هو 18 )
      2. نضرب طرفي المعادلة  في المقام الموحد ( في هذا المثال المقام الموحد هو 18 ).
      3. نحل المعادلة المحصل عليها ( بعد أن نكون قد تخلصنا من الكسور)

  الطريقة الثانيـة : جداء الطرفين = حداء الوسطين 
في هذه الطريقة نقوم أيضا بثلاث خطوات :
      1. نحسب كل طرف في المعادلة على حدى
      2. نستعمل قاعدة جداء الطرفين يساوي جداء الوسطين
      3. نحل المعادلة المتحصل عليها ( بعد أن نكون قد تخلصنا من الكسور)

  الطريقة الثالثـة : بإستعمال الطريقة العادية          
      1. نعزل المجاهيل على المعاليم في طرفي المعادلة
      2.نجمـــع المجاهيل في طرف و المعاليم في الطرف الأخر من المعادلـــة.
      3. نحل المعادلة المتحصل عليها.

أمثلة و معادلات محوسبة :

في هذه البرمجية يمكنك التدرب على طريقة حل المعادلة الكسرية خطوة بخطوة ، فقط ضع علامة صح في الخانة و سنرافقك في الحل.
كلما أنهيت المعادلة يمكنك طلب أخرى جديدة : 

واجبات الدرس الرابع:

إختبار قصير :


تمارين إضافية :

إقرأ المزيد

حجم مجسم ما هو مقدار الحيز الذي يشغله هذا المجسم من الفضاء، ويختلف عن المساحة بأنها مقياس لحيز ثنائي الأبعاد، بنيما الحجم هو مقياس لحيز ثلاثي الأبعاد. فلحساب حجم متوازي المستطيلات مثلا نضرب الإرتفاع في العرض في الطول.
مفهوم الحجم
ويقاس الحجم بوحدات خاصة، فيُقال متر مكعب أو سم مكعب، أو مليميتر مكعب دلالة على أن جسماً ما حجمه يساوي حجم مكعب طول ضلعه متر أو سم واحد. وفي أمريكا وبريطانيا تستخدم وحدات: الإنش لمكعب والقدم المكعب والياردة المكعبة. هناك وحدات خاصّة أخرى تستخدم لقياس الحجم، منها المليلتر واللتر والكوب والغالون التي تستخدم لقياس حجم السوائل. ولكنها في الغالب مشتقة من وحدات الطول بشكل أو بآخر. فاللتر مثلاً، هو عبارة عن حجم مكعب طول ضلعه واحد ديسيمتر، والديسيمتر هو عبارة عن 10 سم.
في هذا الدرس ستعرف على المجسم و نتناول مفهوم الحجم و نعطي تطبيقات على بعض المجسمات الإعتيادية :

1- ماهو المجسم :

المجسم هو كل ما يشغل حيزا من الفراغ أي كل ماله حجم ومقاس ويمكن مسكه واستخدامه و تنقسم المجسمات إلى قسمين هما :
  • المجسمات المنتظمة الحجم : وهى التي يمكن إيجاد حجمها عن طريق الحساب العادى
  • مجسمات غير المنتظمة الحجم : وهى التي لايمكن إيجاد حجمها إلا بالطرق التقليدية
المجسمات المنتظمة محددة : المكعب، متوازي المستطيلات، الكرة، الهرم، المخروط، الموشور الأسطوانة.
حساب الحجوم
المجسمات المنتظمة + صيغة الحجم

2- ماهو الحجم :

أ - تعريف :

حساب الحجوم
            حجم مجسم ما هو مقدار الحيز الذي يشغله هذا المجسم في الفضاء و نرمز له بالرمز V.

ب - مثال :

حجم متوازي المستطيلات

ج - خاصية :

يمكن أن يكون لمجسمين نفس الحجم رغم ان لهما شكلان مختلفان...(يختلفان في الأبعاد : الطول العرض و الإرتفاع):
حجم متوازي المستطيلات
متوازيا المستطيلات مختلفا الأبعاد لكن لهما نفس الحجم =  12u

تطبيق : حل مسألة حول حجم متوازي المستطيلات

مسألة رقم 1 : 3 صنادق زجاجية

         نتوفر على ثلاث صناديق بلاستيكية (A (6cm;5cm;4cm و (B (5cm;4cm;3cm و (C (3cm;3cm;2cm على شكل متوازي المستطيلات القائم. في البداية يكون الصندوق A ممتلئا عن أخره بينما الصندوقان B و C فارغين. في مرحلة ثانية نأخذ ماءا من الصندوق A و نسكبه في الصندوق B حتى يمتلئ عن أخره ثم نسكب في الصندوق C حتى يمتلئ نصفه.
المطلوب : إيجاد إرتفاع الماء المتبقي في الصندوق A.

الحــــل :

تذكير : حجم متوازي المستطيلات = الطول × العرض × الإرتفاع
ليكن (V( A  و (V( B و  (V( C حجوم الصناديق A و B و C على التوالي و ليكن h هو إرتفاع الماء المتبقي في الصندوق A :
في البداية كان الصندوق A ممتلئا عن أخره و B و C فارغين إذن :
    V( A )  =   6 cm × 5 cm × 4 cm
              =   120 cm3

 في المرحلة الثانية :
    V( B )  =   5 cm × 4 cm × 3 cm
            =  60 cm3

    V( C )  =   3 cm × 3 cm × 1 cm
            =  9 cm3

    V( A )  =   120 cm3 − 60 cm3 − 9 cm3
             =  51 cm3
الإرتفاع = الحجم ÷ ( الطول × العرض )
   ( h( A )  =    5 1 ÷   ( 6 × 5
           =  1.7 cm      
إرتفاع الماء المتبقي في الصندوق A هو 1.7 سنتمتر. 
إقرأ المزيد

فيما يلي لعبة من سيربح المليون التي موضوعها المتطابقات الهامة حيث سنختبر مهارتك في النشر و التعميل بواسطة المتطابقات الهامة. يمكنك قبل بدأ هذه اللعبة أن تراجع قواعد المتطابقات الهامة، إتبع هذه الروابط :
أنت تعرف طبعا قانون اللعبة المشهورة و التي حققت أكبر نسب للمشاهدة عربيا و دوليا، إلا أنه لا يحق لك في لعبتنا هاته  الإتصال بصديق، و لا يمكن أن تسأل الجمهور، لأنك ستكون وحيدا و لا يمكن أن نحدف لك إجابتين و إنما ستعتمد على نفسك : خد و رقة و قلم و قم بإجراء حساباتك ثم أشر على الجواب الصحيح.
إضغط زر تكبير بلون أحمرعلى اليمين
إقرأ المزيد

في هذا درس سابق تعرفنا على الخاصية المباشرة لمنتصف وتر مثلث قائم الزاوية و برهنا أن منتصف الوتر في مثلث قائم الزاوية يبعد بنفس المسافة عن جميع رؤوسه. في هذا الدرس نتناول الخاصية العكسية :
المثلث القائم الزاوية و الدائرة

خاصية المثلث القائم الزاوية و الدائرة :

1- نشاط تمهيدي :

في الشكل أسفله لدينا : ABC مثلث محاط بدائرة مركزها O منتصف الضلع  [BC].
قم بتحريك النقط A و B و O ثم لاحــــظ قياس الزاوية BÄC
  1. كم هو قياس الزاوية BÄC  ؟
  2. تظنن خاصية متعلقة بالمثلث ABC.


ملاحظـــة : مهما نغير من و ضع النقط A و B و O  يبقى قياس الزاوية  BÄC هو °90.
مظنـــونة : إذا كان منتصف أحد أضلاع مثلث يبعد بنفس المسافة عن رؤوسه ، فإن هذا المثلث قائم الزاوية في الرأس المقابل لهذا الضلع .

2- البرهان على الخاصية :

          تمرين :
ABC مثلث محاط بدائرة مركزها O منتصف الضلع  [BC] و ليكن I منتصف [AC].
1. برهن أن (AC) ⊥  (IO).
2. برهن أن  (AB) //  (IO).
3. إستنتج طبيعة المثلث ABC
الجــــــواب :
الشكل
1- نبرهن أن  (AC) ⊥  (IO) :
لدينا    : O هو مركز الدائرة المحيطة بالمثلث ABC، إذن   : OA = OC  (أ)  
و منه  : O تنتمي إلى واسط القطعة [AC] ( كل نقطة متساوية المسافة عن طرفي قطعة تنتمي إلى واسط هذه قطعة )
و لدينا : I منتصف القطعة [AC]، إذن   :  IA  =  IC    (ب) 
و منه  : I تنتمي إلى واسط القطعة [AC]
من (أ) و (ب) نستنتج أن : (IO) هو  واسط القطعة [AC]  (واسط قطعة هومجموعة النقط المتساوية المسافة عن طرفيها)
إذن    :  (AC) ⊥  (IO)  ( واسط قطعة هو المستقيم المار من منتصفها و العمودي على حاملها).

2. نبرهن أن (AB) //  (IO) :
لدينا : I منتصف القطعة [AC]، و لدينا : O منتصف القطعة [BC]
إذن  : (AB) //  (IO) (المستقيم المار من منتصفي ضلعين في  المثلث يوازي حامل الضلع الثالث).
أنظر الخاصية المستعملة : " خاصية المستقيم المار من منتصفي ضلعين في المثلث "

3- نستنتج طبيعة المثلث ABC :
لدينا : (AC) ⊥  (IO) و (AB) //  (IO)
إذن  : (AB) ⊥  (AC) ( إذا كان مستقيمان متوازيين فكل عمودي على أحدهما يكون عموديا على الأخر )
و منه : المثلث ABC قائم الزاوية في النقطة A.
أنظر الخاصية المستعملة : " خاصيات التوازي و التعامد "

3- خاصية هامة :

   إذا كان منتصف أحد أضلاع مثلث يبعد بنفس المسافة عن رؤوسه ، فإن هذا المثلث قائم الزاوية في الرأس المقابل لهذا الضلع .
بتعبير أخر :
   ABC مثلث و O منتصف[BC]
 إذا كان  OA = OB = OC .
فإن : ABC مثلث قائم الزاوية في A

تمرين تطبيقي :

         تمرين :
AEB مثلث متساوي الساقين رأسه E و C هي مماثلة النقطة A بالنسبة للنقطة E
1 – أنشئ الشكــل .
2 – ماهي طبيعة المثلث ABC ؟ علل جوابك .
الحــــل :
1–
2 – طبيعة المثلث  ABC  :
     نعلم أن  :  AEB مثلث متساوي الساقين رأسه E .
    إذن       :   EA = EB   . (أ)
  و نعلم أن  :  C هي مماثلة A بالنسبة للنقطة E .
         إذن  :  E  منتصف [AC] .
 و منه فإن  :  EA = EC  ‚ .(ب)
من  (أ) و(ب)   نستنتج أن  :   EA = EB = EC .
      و بالتالي :
     لدينا في المثلث ABC  :
             E منتصف [AC]
      و
             EA = EB = EC
       إذن   :    ABC مثلث قائم الزاوية في B.

تمارين إضافية للإنجاز الفردي :

إقرأ المزيد

المتطابقة الهامة الثالثة هي متساوية جبرية يتضمن أحد طرفيها جداء صيغتين مترافقتين (a - b )( a + b ) و الطرف الأخر يتضمن فرق مربعين a² - b² و تستعمل لتيسير العمليات الحسابية والنشر والتعميل.
في هذا الدرس تدريب على طريقة النشر و التعميل بواسطة المتطابقة الهامة رقم 3 مسبوق بتذكير و أمثلة و مرفوق  بتمارين محوسبة و أخرى محلولة أو للإنجاز الفردي :
النشر و التعميل بإستعمال المتطابقة الهامة

معلومات أساسية :

1 - التعرف على المتطابقة :  a - b )( a + b ) = a² - b² )

يمكن أن نبرهن على صحة هذه المتساوية كالتالي :
جبريا  :
سنقوم بنشر الطرف الأيسر من المتساوية (a - b)(a + b) و نتصرف هكذا :
(a - b)(a + b) = a×a + a×b - b×a - b×b
               = a²  + ab - ba - b²
               = a²  + ab - ab - b²
               = a² - b²
 (a - b)(a + b) = a² - b² 
هندسيا :
يمكن أن ننشئ مستطيل طوله a + b و عرضه a - b حيث a و b عددان جذريان و a>b و نحسب مساحة هذا المستطيل بطريقتين مختلفتين :
S =  (a - b)(a + b) + ab + b²                
أو :
S =  a² + b² +  b(a - b)
  =  a² + b² + ab - b²
  =  a² + ab
ومنه :
(a - b)(a + b ) + ab + b² =  a² + ab
(a - b)(a + b )  + b² =  a² 
(a - b)(a + b )  =  a² - b²
 (a - b)(a + b) = a² - b²  
البرمجية التالية تشرح نفس الطريقة بكيفية أخرى : يمكنك إيقاف العرض و تتبع المراحل بإستعمال النقطة P قم بمسك وسحب P نحو الأسفل :
بصفة عامة : مهما يكن a و b عددان جذريان فإن
أمثلة :
(x - 6)(x + 6) = x² - 6² = x² - 36
(2x + 7)(2x - 7) = (2x)² - 7² = 4x² - 49
y² - 81 = y² - 9² = (y - 9)(y + 9)
9 - 16y² = 3² - (4y)² = (3 - 4y)(3 + 4y)

2 - تدريب على المتطابقة :  a - b )( a + b ) = a² - b² )

أتمم ملأ الجدول التالي :

النشر و التعميل بإستعمال المتطابقة الهامة a+b)(a-b)=a²-b²)

1- النشر بإستعمال المتطابقة الهامة a+b)(a-b) = a² - b²)

عندما ننتقل من الطرف الأيسر من المتساوية (من (a - b)(a + b) ) إلى الطرف الأيمن منها ( إلى a² - b² ) نقول أننا نشرنا المتطابقة :
         تمرين : أنشر و بسط مايلي
          (A= (x - 11)(x + 11)                 C = (5x - 1)(5x + 1)             B = (3 - z)(3 + z
الحل :
(C = (3 - z)(z + 3
(B = (5x - 1)(5x + 1
(A= (x - 11)(x + 11
C = 3² - z²
C = 9 - z²
B = (5y)² - 1²
B =  25x² - 1
A = x² - 11²
A = x² - 121
تمارين إضافية :

2- التعميل  بإستعمال المتطابقة الهامة a+b)(a-b) = a² - b²)

عندما ننتقل من الطرف الأيسر من المتساوية (من a² - b² ) إلى الطرف الأيمن منها ( إلى (a - b)(a + b) ) نقول أننا عملنا المتطابقة :
         تمرين : عمل مايلي
                    9 - ²(1 -  A= x² - 25                 B = 9y² - 64             C = (2x
الحل :
C = (2x -1)² - 9
B = 9y² - 64
A= x² - 25
C = (2x -1)² - 3²
(C = (2x - 1 - 3)(2x - 1 + 3
(2 + C = (2x - 4)(2x
B = (3y)² - 8²
(B =  (3y - 8)(3y + 8
A = x² - 5²
(A =  (x - 5)(x + 5
تمارين إضافية :
إقرأ المزيد

في هذا الدرس سنتعرف على الخاصية المباشرة لمنتصف وتر مثلث قائم الزاوية:
خاصية منتصف وتر مثلث قائم الزاوية

خاصية منتصف وتر مثلث قائم الزاوية

1- نشاط تمهيدي :

في الشكل جانبه لدينا :
ABC مثلث قائم الزاوية في A
I منتصف الوتر [BC]
                                                                               
قم بتحريك النقط A و B و I
ماذا تلاحـــــظ ؟
تظنن خاصية متعلقة بذلك

  
ملاحظـــة : مهما نغير من و ضع النقط A و B و I تبقى المسافات IA و IB و IC متساوية.
مظنـــونة : منتصف و تر مثلث قائم الزلوية يبعد بنفس المسافة عن جميع رؤوســـه.

2- البرهان على الخاصية :

          تمرين :
ABC مثلث قائم الزاوية في A و I منتصف الوتر [BC] و ليكن (d) و اسط القطعة [AC].
1. برهن أن (AB) // (d).
2. برهن أن النقطة I تنتمي إلى (d).
3. إستنتج أن IA = IB = IC.
الجــــــواب :
الشـــــكل + المعطيات
1- نبرهن أن  (AB) // (d) :

لدينا المثلث ABC قائم الزاوية في A إذن    : (AB) عمودي على  (AC)        (أ)
لدينا المستقيم (d) و اسط القطعة [AC] إذن : (d)    عمودي على   (AC)     (ب)
من (أ) و (ب) نستنتج أن (AB) // (d). (مستقيمان عموديان على نفس المستقيم هما مستقيمان متوازيان)

2. نبرهن أن النقطة I تنتمي إلى (d) :

لدينا (d) يوازي (AB) و يمرمن منتصف القطعة  [BC] ( واسط قطعة هو المستقيم المار من منتصفها و العمودي على حاملها).
إذن (d) يقطع [BC] في منتصفها I (المستقيم المار من منتصف أحد أضلاع مثلث و الموازي للضلع الثاني يقطع الثالث في منتصفه).
ومنه  I تنتمي إلى (d).
أنظر الخاصية المستعملة : " خاصية المستقيم المار من منتصف أحد أضلاع مثلث و الموازي لحامل الضلع الثاني "

3- نستنتج أن IA = IB = IC :

I تنتمي إلى (d) تعني أن :   IA = IC      C            (ج)  ( كل نقطة تنتمي إلى واسط قطعة تكون متساوية المسافة عن طرفيها )
I منتصف [BC] تعني أن :   IA = IB      B           (د)
من (ج) و (د) نستنتج أن  IA = IB = IC

3- خاصية هامة :

   إذا كان مثلث قائم الزاوية فإن منتصف وتره يبعد بنفس المسافة عن رؤوسه.
بتعبير أخر :
   إذا كان ABC مثلث قائم الزاوية في A و I منتصف[BC]
 فإن : IA = IB = IC .

تمرين تطبيقي :

         تمرين :
ABC مثلث قائم الزاوية في A حيث : ABC = 50°  و M منتصف [BC] .
1 – أنشئ الشكــل .
2 – ماهي طبيعة المثلث AMB ؟ علل جوابك .
3 – استنتج قياس الزاوية MAB .
الحــــل :
1–
الشــــــكل
2 – طبيعة المثلث  AMB  :
          نعلم أن  :  ABC مثلث قائم الزاوية في A .
   و
          M منتصف الوتر [BC] .
  إذن  :  MA = MB = MC .   أي :  MA = MB .
   و منه فإن المثلث  AMB متساوي الساقين رأسه M .

3 – لنستنتج قياس الزاوية   MAB  :
         نعلم أن :    AMB مثلث متساوي الساقين في E .
             إذن  :    زاويتا القاعدة متقايستين MAB = MBA
       و بما أن :   MBA = 50°    فإن  :     MAB = 50°
تمارين إضافية للإنجاز الفردي :
إقرأ المزيد

معادلة بأقواس
تعرفنا على المعادلة البسيطة ذات الخطوتين و تعرفنا على مراحل إنجازها و طريقة حلها، في الدرس الثالث سنتابع مع المعادلات المتعددة الخطوات وهذه المرة مع المعادلة التي تتضمن أقواسا.
طريقة حل هذه الأخيرة لا تختلف عن طريقة حل المعادلة البسيطة، حيث أنك كلما كنت ملما بقواعد إزالة الأقواس المسبوقة بعلامة + أو - و قاعدة النشر إلا وجدت نفسك تجيد حل مثل هكذا معادلات بأقواس، المبدأ في الحل هو إزالة الأقواس في المعادلة أولا كي نحصل على معادلة البسيطة.

أنشطة التمهيد المعادلة البسيطة معادلة بأقواس

قاعدة + أمثلة :

قاعدة النشر :
               إذا كانت a و b و k أعداد حقيقية فإن :
k(a + b) = ka + kb   و  k(a - b) = ka - kb

حالة خاصة :

**/ إذا كان k = 1  فإن : a  +  b) = a + b) +
**/ إذا كان k = -1 فإن : a  +  b) = -a - b) -

تطبيق :  حل المعادلة
2(x + 5) = 3 - (x + 7)
1. ننشر بإستعمال القاعدة السابقة حتى نقصي جميع الأقواس:

2. بعد عملية النشر و إزالة الأقواس نحصل على معادلة بسيطة من النوع ax + b = cx + d : (أنظر طريقة إنجاز هنا)
أنظر طريقة إنجاز هنا 
3. نجمع المعاليم في طرف و المجاهيل في طرف مع تغيير إشارة كل حد إنتقل من طرف إلى أخر :

4. أخيرا :     x = -14
حـــل هذه المعادلة هو : 14-

أمثلــــة محوسبة :
في البرمجية التالية يمكنك التدرب على هذا النوع من المعادلات، سنرافقك في الحل خطوة بخطوة فقط ضع علامة صح على في الخانة و تتبع مراحل الإنجاز. في كل مرة إنتهيت يمكنك الضغط على معادلة جديدة :
أمثلة و شروحات بالفيديو :

تمارين و حلول :

إقرأ المزيد

المعادلة من الدرجة الأولى بمجهول واحد
كل متساوية من النوع ax + b = 0  تسمى معادلة من الدرجة الأولى بمجهول واحد، و تعرف أيضا بمعادلة الخطوتين حيث نعتمد في حلها على خطوتين فقط. في هذه الحصة سنتعرف على هذه المعادلة و نتناول طريقة حلها.

سيكون من المفيد إتقان مراحل إنجازالمعادلة ax + b = 0 لأن أغلب المعادلات المقررة في منهاج السنة الثانية ثانوي إعدادي تؤول في حلها الى معادلة من الدرجة الأولى بمجهول واحد من شاكلة ax + b = 0.
أنشطة تمهيدية حول المعادلات

معارف أساسية :

   قاعدة 1 :   

          في معادلة يمكن أن نضيف أو نطرح من طرفيها نفس العدد دون أن تتغير هذه المعادلة
   قاعدة 2 :   
          في معادلة يمكن أن نضرب أو نقسم طرفيها على نفس العدد الغير المنعدم دون أن تتغير هذه المعادلة
قاعدة 2 المعادلة من الدرجة الأولى بمجهول واحد
 بصفة عامة : 

نعتبر المعادلة ax + b = 0 و لنفرض ان a يخالف 0.
بالأعتماد على القاعدة 1 و القاعدة 2 يمكن نحل هذه المعادلة بخطوتين كالتالي :

خطوة 1  نطرح b من طرفي المعادلة   :    ax + b - b = 0 - b   نحصل على  ax  =  - b
خطوة 2  نقسم  طرفي المعادلة على a ة :    ax ÷ a = -b÷a   نحصل على  x  = -b/a

   تعريف  :    
              a و b و x أعداد حقيقية .
كل متساوية على شكــل : ax + b = 0 تسمى معادلة من الدرجة الأولى بمجهول واحد هو x.
** / إذا كان : a يخالف 0 و b يخالف 0 فإن : للمعادلة ax + b = 0 حــلا وحيدا هو b/a-.
** / إذا كان : a يخالف 0 و b يساوي 0 فإن : للمعادلة ax + b = 0 حــلا وحيدا هو العدد 0 .
** / إذا كان : a يساوي 0 و b يساوي 0 فإن : للمعادلة ax + b = 0 عدة حلول .
** / إذا كان : a يساوي 0 و b يخالف 0 فإن : المعادلة ax + b = 0 ليس لها حـــلا .
  أمثلــة  :   
  • 2x - 4 = 0 =>  x = 4/2 => x = 2
  • 3x + 8 = 0 =>  x = -8/3
  • 7x  = 0 =>  x = -0/7 => x = 0
  • 0x + 18 = 0 =>   ليس لها حـــلا . 
المزيد من الأمثلة :

    شروحات بالفيديو :   

المعادلة : ax + b = cx + d 

في الحقيقة هذه المعادلة لا تختلف كثيرا عن المعادلة السابقة و يمكن إعتبارها هي الأخرى بسيطة. هنا تظهر لنا الحدود التي تتضمن المجهول في طرفي المعادلة و الحدود المعلومة هي الأخرى متفرقة على طرفي المعادلة.
سنستعمل نفس القواعد السابقة لحل مثل هكذا معادلات :

مثــــــال : حل المعادلة 5x + 2 = 3x - 10

مثال المعادلة من الدرجة الأولى بمجهول واحد

يمكن أن نختصر بعض الحسابات و نتبع الخطوات التالية و هي تفيد نفس معنى ما قمنا به أعلاه :
1- نجمع الحدود التي تتضمن المجهول في الطرف الأيسر من المعادلة مع تغيير إشارة كل حد إنتقل من طرف إلى الطرف الأخر.
2- نجمــــع الحدود المعلومة في الطرف الأيمن من المعادلة مع تغيير إشارة كل حد إنتقل من طرف إلى الطرف الأخر.
3- نجري الحساب و نجد قيمة  x.
5x  +    2 =  3x  - 10
الأعداد المعلومة في طرف و الأعداد المجهولة في الطرف الأخر :
2 - 5x - 3x =  - 10
نحسب ونبسط طرفي المعادلة :
2x = -12
نقسم طرفي المعادلة على 2 :
x = -12/2
نختزل و نجد حل المعادلة :
x = -6

أمثلة محوسبة :
في البرمجية التالية يمكنك أن تتدرب على حل هذا النوع من المعادلات بإستعمال الطريقة السابقة. قم بكتابة المعادلة التي تريد و سنرافقك في مراحل إنجازها. قم بمسك و تحريك النقطة البنفسجية على الخط الرأسي :

أمثلة بالفيديو :

واجبات الدرس الثاني :

1 - الإختبار القصير


2- تمارين منزلية :


إقرأ المزيد


في هذا الدرس الأول من سلسلة دروس المعادلات، سنتناول مجموعة من الأنشطة التمهيدية التي من خلالها سنختبر مكتسباتك القبلية بخصوص المعادلة من الدرجة الأولى بمجهول واحد. 

سنميز بين المعادلة و المتساوية و التعبير الجبري، نتعرف على المجهول في المعادلة و نستكشف بعض من طرق و تقنيات الحل بإعتماد القواعد و الخاصيات التي تنظم الحساب في المعادلات. هذه الحصة تتضمن خمس مهمات ، المطلوب منك التفاعل مع الأسئلة و إسترجاع ما تعلمته من إستراتيجيات في حل المعادلات :

نشاط رقم 1 : معادلة أم لا ... حل أم لا !

   مهمة رقم 1 :   
    المطلوب منك في هذه المهمة أن تتعرف على المعادلة و تميزها عن غيرها في مرحلة اولى، و أن تتأكد من حل معادلة في مرحلة ثانية :

       تلميحات :   

      نشاط رقم 2 : برنامج حساب

         مهمة رقم 2 :   

                  برنامج حساب
        هشام و أحمد كل منهما يرقن في البداية نفس العدد على ألته الحاسبة و كل منهما بعيدا عن الأخر يقوم بما يلي :
            * هشام يضرب هذا العدد في 8 ثم يضيف 7 للناتج المحصل عليه.
            * أحمد يضرب هذا العدد في 6 ثم يضيف 13 للناتج المحصل عليه.
        الغريب في الأمر... أن الألتين الحاسبتين تظهران نفس الناتج !!
           أ ) - في نظرك هل يمكن أن يكون 3 هو العدد الذي إختاره أحمد و هشام في البداية ؟ علل حساباتك
           ب) - هل يمكن أن يصلح الأمر كذلك مع 2 ؟ علل الجواب
        سهام فعلت نفس الشئ مع عدد البداية على ألتها الحاسبة لكنها قامت بما يلي:
           * سهام تضرب هذا العدد في 3 ثم تضيف 30 للناتج المحصل عليه.
          ج) - هل يمكنها أن تجد نفس الناتج مثل هشام و أحمد ؟ علل الجواب

           حل مسألة برنامج حساب :   

        للتفكير :

        بفرض أنهم لم يعطونا العدد 3 في السؤال أ) كي نتأكد فعلا من أنه هو العدد الذي إختاره أحمد و هشام في البداية. كيف يمكنك أن تجد بنفسك هذا العدد ؟

           الحــــــل :   

        نشاط رقم 3 : معادلة ميزان

           مهمة رقم 3 :   
          في هذا النشاط سنختبر قدرتك على حل معادلة إعتمادا على مبدأ الميزان حيث أنه يمكنك أن تضيف (أو تنقص) من كفتيه نفس الكمية و يبقى في حالة توازن. المطلوب منك الإشتغال على مرحلتين لحل المعادلة المعطاة :

              *- قم بمسك و ترحيل المجهول × المعبر عنه بلون أزرق و الوحدات المعبر عنها بنقط حمراء إلى داخل المستطيلين حتى تحصل على المعادلة المطلوبـة في حالة توازن.

              *- قم بمسك و ترحيل ال × المعبر عنها بلون أزرق و الوحدات المعبر عنها بنقط حمراء إلى خارج المستطيلين حتى تحصل على قيمة  ×
           
              *- قم بإختيار معادلة جديدة ثم أعد الكرة : 

          نشاط رقم 4 : قاعدتان هامتان 

          قاعدة 1 :
                     في معادلة يمكن أن نضيف أو نطرح من طرفيها نفس العدد دون أن تتغير هذه المعادلة : a + c = b + c  <=> a = b
          قاعدة 2 :
                    في معادلة يمكن أن نضرب أو نقسم طرفيها على نفس العدد الغير المنعدم دون أن تتغير هذه المعادلة : a × c = b × c  <=> a = b

             مهمة رقم 4 :   

          نشاط رقم 5 : مسألة هندسية

             مهمة رقم 5 :   

            في الشكل جانبه ABCD مستطيل حيث أن :
                   AB = 5cm و AD = 2cm
            M نقطة متحركة على القطعة [DC]. 
                  نضع : DM = x
             في هذا النشاط نريد تحديد قيم x التي من أجلها يكون        المثلث AMB قائم الزاوية في M.
            و لكي نجيب على هذا النشاط سنستعمل طريقتين  مختلفتين لإيجاد قيم x التي تحقق المطلوب : الطريقة  الهندسية و الطريقة الجبرية :

          1 ) .  الطريقة الهندسية :
               أ ) - حرك النقطة  Mعلى القطعة [DC] و حدد قيم x التي من أجلها يكون المثلث AMB قائم الزاوية في  M.
               ب ) - وصف مراحل طريقة إنشاء النقطة M هندسيا بحيث يكون المثلث AMB قائم الزاوية في  M.

          2 ) .  الطريقة الجبرية :
               أ ) - بإعتماد أطوال أضلاع المثلث AMB . متى يكون AMB قائم الزاوية في M ?
               ب) - في المثلث ADM عبرعن AM² بدلالة x.
               ج) -في المثلث BCM عبرعن BM² بدلالة x.
               د ) - إستنتج أنه لكي يكون المثلث AMB  قائم الزاوية في M يجب أن تتحقق المعادلة التالية : x² - 5x + 4
               ه ) - أنشر و بسط : (P = (x -1)(x - 4
               و) - أسنتج حلول المعادلة الواردة في السؤال د).

              الحلول الكاملة :   

          إقرأ المزيد

          في هذا الدرس نذكر بتعريف واسط قطعة و نستعرض أهم خاصياته، نتعرف على واسطات مثلث و نتظنن قاعدة متعلقة بذلك. في الأخير نوظف هذه القاعدة في حل مسألة هندسية عن طريق البرهان :

          1) واسط قطعة - واسط مثلث :

          أ) تعريف واسط قطعة (تذكير) :
               واسط قطعة هو المستقيم المارمن منتصفها و العمودي على حاملها.
          نسمي (AH) إرتفاع المثلث ABC االموافق للضلع [BC] .
          ب) خاصيات واسط قطعة (تذكير) :
                    خاصيات :
          1. كل نقطة تنتمي إلى واسط قطعة تكون متساوية المسافة عن طرفيها.
          2. كل نقطة متساوية المسافة عن طرفي قطعة تنتمي إلى واسط هذه القطعة.
          3. واسط قطعة هو مجموعة النقط المتساوية المسافة عن طرفيها.
            ج) تعريف واسط مثلث :
                 واسط مثلث هو واسط أحد اضلاعـــه.

            2) واسطات مثلث

            أ- نشاط تمهيدي
            المطلوب منك في هذا النشاط إنشاءا هندسيا من خلاله تكتشف و تخمن قاعدة تتعلق بواسطات مثلث :
            1.  بإستعمال الأداة أنشئ مثلث ABC
            2. بإستعمال الأداة أنشئ  واسطات المثلث ABC
            3. قم بتحريك رؤوس المثلث ABC و غير من أطوال أضلاعـــه. ماذا تلاحـــظ ؟
            4. تظنن قاعدة متعلقة  بواسطات  المثلث.
            5. بإستعمال الأداة أنشئ  الدائرة التي مركزها نقطة تلاقي الواسطات وتمر من A. ماذا تلاحـــــظ ؟
            6. تظنن قاعدة متعلقة  بهذه الدائرة

            Cliquer ici pour voir la construction et pour faire une conjecture          

            ب) خاصية  :
            واسطات مثلث تتلاقى في نقطة واحدة هي مركز الدائرة المحيطة بهذا المثلث.
            ج) تمرين تطبيقي :
                          نص التمرين :
            A وB وC ثلاث نقط من دائرة مركزها O.
            (d) المستقيم المارمن O و العمودي على (BC) في النقطة 'A.
            1. انشئ الشكل.
            2. برهن أن 'A هي منتصف [BC].
            3. ماذا يمثل المستقيم (d) بالنسبة للمثلث OBC ؟
            الشــــكل + البرهان :
            المعطيات :
            • دائرة مركزها O تحيط بالمثلث ABC.
            • (d) يمر من O و عمودي على (BC) في النقطة 'A.
            المطلوب : نبرهن أن 'A هي منتصف [BC]

            نص البرهان :
            2-
            A وB وC ثلاث نقط من دائرة مركزها O يعني أن : الدائرة التي مركزها O هي الدائرة المحيطة بالمثلث ABC.
            أي أن : O هو نقطة تلاقي واسطات المثلث ABC.
            بمأن (d) يمر من O و عمودي على (BC) نستنتج أن : (d) واسط للضلع [BC]
            أي أن : (d) يقطع [BC] في المنتصف
            وبالتالي : 'A منتصف [BC].
            3-
            المستقيم (d) يمر من رأس المثلث OBC و عمودي على [BC] في منتصفه إذن يمكن إعتباره :
            • إرتفاعا المثلث OBC : لأنه مار من أحد رؤوس المثلث و عمودي على حامل الضلع المقابل.
            • واسطا في المثلث OBC : لانه واسط أحد أضلاعه (واسط [BC])
            • متوسطا في المثلث OBC : لانه مار من أحد رؤوس المثلث و منتصف الضلع المقابل.
            • منصفا للمثلث OBC : ينصف الزاوية BÔC إلى زاويتين لهما نفس القياس.
            إقرأ المزيد